EDITORIAL COMMENT

Another Coronary Stent for Patients at High Bleeding Risk*

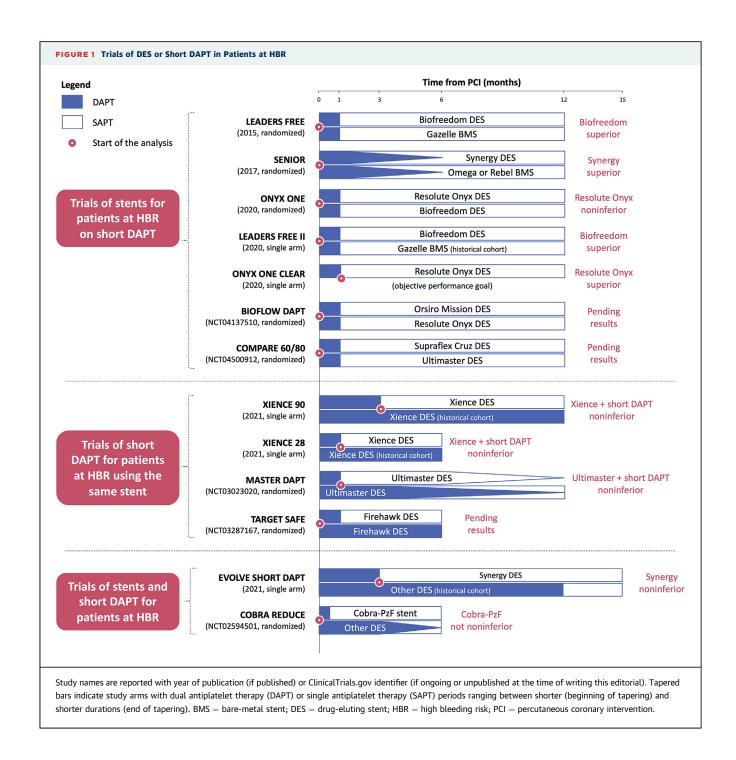
Davide Capodanno, MD, PHD

pproximately 40% of patients undergoing percutaneous coronary intervention (PCI) and stent implantation who receive dual antiplatelet therapy (DAPT) present with characteristics of high bleeding risk (HBR) (1,2). In these subjects, prescribing shorter DAPT durations (eg, 1 or 3 months) in contrast to standard durations (eg, 6 or 12 months depending on clinical presentation) is recommended among strategies for bleeding prevention (3). Shortening DAPT carries some theoretical risk of withdrawal of antithrombotic protection, especially in HBR patients who also present with characteristics of high thrombotic risk. Therefore, it seemed necessary at some point to re-evaluate the safety of currently available stents in a context specific to HBR patients who receive short DAPT. To that end, stent manufacturers have conducted a number of trials to fulfill the expectations of regulatory agencies and, eventually, be able to label their products with expanded HBR indications (4-9).

SEE PAGE 1870

In this issue of *JACC: Cardiovascular Interventions*, Mehran et al (10) report the results of 2 new studies of short DAPT using the Xience stent (Abbott Vascular), an extensively investigated everolimus-eluting stent with thromboresistant fluoropolymer coating. Both studies enrolled only HBR patients, were single-arm, used for comparison propensity-stratified historical

From the Division of Cardiology, Azienda Ospedaliero Universitaria Policlinico G. Rodolico-San Marco, University of Catania, Catania, Italy. The author attests he is in compliance with human studies committees and animal welfare regulations of the author's institution and Food and Drug Administration guidelines, including patient consent where appropriate. For more information, visit the Author Center.


cohorts of the same device with prolonged DAPT, and were powered for noninferiority on death or myocardial infarction and for superiority on bleeding (Bleeding Academic Research Consortium [BARC] type 2-5). The statistical plan prespecified blanking periods that formally make these 2 investigations corresponding comparisons of aspirin (ie, after discontinuation of the P2Y₁₂ inhibitor) and DAPT.

In the XIENCE 90 study (n = 2,047, of whom 1,693 discontinued DAPT at 3 months from PCI), the mean rates of death or myocardial infarction between 3 and 12 months in groups defined by quintiles of the propensity score were identical (5.4%) in the aspirin and DAPT groups (P for noninferiority = 0.0063). Reassuringly, stent thrombosis occurred in only 0.2% of patients on aspirin (P < 0.0001 compared with an objective performance goal of 1.2%). The mean rates of BARC type 2 to 5 bleeding were similar with aspirin and DAPT (5.1% vs 7.0%; P = 0.069)—with the authors acknowledging some chance of underreporting in the control group to explain the lack of a statistically significant difference—but BARC type 3 to 5 bleedings were lower with aspirin (2.2% vs 6.3%; P < 0.0001).

The XIENCE 28 study pooled data from 2 separate studies conducted in the United States and Canada (XIENCE 28 USA study) and in Europe and Asia (XIENCE 28 Global study), encompassing a total of 1,605 patients, of whom 1,392 discontinued DAPT at 1 month from PCI. The mean rates of death or myocardial infarction between 1 month and 6 months in groups defined by quintiles of the propensity score were 3.5% and 4.3% in the aspirin and DAPT groups, respectively (P for noninferiority = 0.0005). Stent thrombosis occurred in 0.3% in both groups. Again, the mean rates of BARC type 2 to 5 bleeding were similar (4.9% vs 5.9%; P = 0.19), while the composite of BARC type 3 to 5 bleeding was significantly lower with aspirin (2.2.% vs 4.5%; P = 0.016).

The many ways stent manufacturers are designing their trials in HBR populations are schematized in

^{*}Editorials published in *JACC: Cardiovascular Interventions* reflect the views of the authors and do not necessarily represent the views of *JACC: Cardiovascular Interventions* or the American College of Cardiology.

Figure 1. Several differences in design, use of a blanking period, endpoints, choice of a synchronous or historical cohort, and especially the choice of the comparator (ie, a different stent with the same DAPT duration, the same stent with a different DAPT duration, or even different stents and DAPT durations all together) are apparent. The Academic Research Consortium, under the auspices of the Food and Drug

Administration, has recently issued a set of recommendations for standardizing the design of trials of devices and DAPT strategies for patients at HBR (11). Ideally, based on these standards, stent trials should privilege the use of superiority rather than non-inferiority designs, and 1-to-1 randomization in contrast to comparisons of single-arm registries with historical cohorts. The XIENCE 90 and 28 studies, like

Capodanno

other trials, were designed before these nonbinding recommendations became available, which partly explains a certain degree of misalignment (11). Yet, a noninferiority design is justifiable when an effective treatment has already been established, and the investigational strategy offers greater convenience or safety (in this case, less major bleeding) while preserving a prespecified margin of efficacy. For the purists of trial design, it is more problematic to accept that in the XIENCE 90 and XIENCE 28 studies the comparator was a propensity-stratified historical cohort dated back a decade earlier (12). In that respect, the design of the XIENCE 90 study is similar to that of the EVOLVE Short DAPT study, a prior study of the Synergy stent (Boston Scientific) that was also single-arm, and similarly used a 3-month blanking period and a historical 12-month DAPT control (8). Putting the XIENCE 28 study into perspective is more problematic, because other HBR studies of drugeluting stents in the context of 1-month DAPT followed diverse approaches: 1) by randomizing versus bare-metal (LEADERS FREE and SENIOR study) or drug-eluting (ONYX ONE study) stents (4-6); or 2) by comparing single-arm registries versus objective performance goals (ONYX ONE Clear study) or historical cohorts using the same DAPT duration (LEADERS FREE II study) (7,9).

With positive results stemming from the peculiar study design chosen by the XIENCE 90 and XIENCE 28 study investigators, the correct implication for clinical practice is not that these studies authorize upfront decisions for 3- or 1-month DAPT (ie, at the time of PCI), but rather that discontinuation of DAPT after implantation of the Xience stent is justifiable after an uneventful period of 3 months or even 1 month if dictated by clinical circumstances or medical judgment (13). These considerations apply to

patients undergoing relatively noncomplex PCI procedures such as those represented in the 2 registries, in which patients with ST-segment elevation myocardial infarction were also excluded.

Interventional cardiologists now have several options for stent selection in the broad and increasingly recognized HBR population. In June 2021, based on the XIENCE 28 study, the Food and Drug Administration approved the short DAPT labeling of the Xience stent for patients at HBR. In the United States, this expanded indication adds to those similar already issued for the Resolute Onyx (Medtronic) and Synergy stents based on the ONYX ONE Clear and EVOLVE Short DAPT studies, respectively. It is noteworthy that these 3 studies have in common the use of a single arm and a blanking period, while they differ significantly in the choice of the control group, denoting a trend and some degree of flexibility allowed by the regulators. In this evolving regulatory scenario, the results of more conventional randomized trials of HBR patients comparing drug-eluting stents (eg, NCT04137510. NCT04500912) and DAPT durations (eg, NCT03023020, NCT03287167) are forthcoming.

FUNDING SUPPORT AND AUTHOR DISCLOSURES

Dr Capodanno has received consulting and speaker fees from Amgen, Boehringer Ingelheim, Biotronik, Daiichi-Sankyo, and Sanofi outside the present work.

ADDRESS FOR CORRESPONDENCE: Dr Davide Capodanno, Azienda Ospedaliero-Universitaria Policlinico G. Rodolico-San Marco, University of Catania, Via Santa Sofia, 78, 95100 Catania, Italy. E-mail: dcapodanno@unict.it.

REFERENCES

- 1. Urban P, Mehran R, Colleran R, et al. Defining high bleeding risk in patients undergoing percutaneous coronary intervention: a consensus document from the Academic Research Consortium for High Bleeding Risk. *Circulation*. 2019;140:240-261.
- Ueki Y, Bär S, Losdat S, et al. Validation of the Academic Research Consortium for High Bleeding Risk (ARC-HBR) criteria in patients undergoing percutaneous coronary intervention and comparison with contemporary bleeding risk scores. EuroIntervention. 2020;16:371–379.
- **3.** Capodanno D, Alfonso F, Levine GN, Valgimigli M, Angiolillo DJ. ACC/AHA versus ESC

- guidelines on dual antiplatelet therapy. *J Am Coll Cardiol*. 2018;72:2915–2931.
- **4.** Urban P, Meredith IT, Abizaid A, et al. Polymerfree drug-coated coronary stents in patients at high bleeding risk. *N Engl J Med*. 2015;373:2038-
- **5.** Varenne O, Cook S, Sideris G, et al. Drug-eluting stents in elderly patients with coronary artery disease (SENIOR): a randomised single-blind trial. *Lancet*. 2018;391:41–50.
- **6.** Windecker S, Latib A, Kedhi E, et al. Polymerbased or polymer-free stents in patients at high bleeding risk. *N Engl J Med*. 2020;382:1208–1218.
- **7.** Krucoff MW, Urban P, Tanguay J-F, et al. Global approach to high bleeding risk patients with polymer-free drug-coated coronary stents. *Circ Cardiovasc Interv.* 2020;13:e008603.
- **8.** Kirtane AJ, Stoler R, Feldman R, et al. Primary results of the EVOLVE Short DAPT study. *Circ Cardiovasc Interv.* 2021:14:e010144.
- **9.** Kandzari DE, Kirtane AJ, Windecker S, et al. One-month dual antiplatelet therapy following percutaneous coronary intervention with zotarolimus-eluting stents in high-bleeding-risk patients. *Circ Cardiovasc Interv.* 2020;13: e009565.

- **10.** Mehran R, Cao D, Angiolillo DJ, et al. 3 or 1-month DAPT in patients at high bleeding risk undergoing everolimus-eluting stent implantation. *J Am Coll Cardiol Intv*. 2021;14:1870–1883.
- **11.** Capodanno D, Morice M-C, Angiolillo DJ, et al. Trial design principles for patients at high bleeding
- risk undergoing PCI. *J Am Coll Cardiol*. 2020;76: 1468–1483.
- **12.** Krucoff MW, Rutledge DR, Gruberg L, et al. A new era of prospective real-world safety evaluation. *J Am Coll Cardiol Intv*. 2011;4:1298–1309.
- **13.** Capodanno D. Evolving landscapes in coronary stents for patients at high bleeding risk. *Circ Cardiovasc Interv.* 2021;14:e010591.

KEY WORDS coronary stent, high bleeding risk